Virtual Surveillance: The Role of Housewives In Managing Early Childhood Mobile Phone Use
Authors
Keywords:
Virtual Surveillance, Housewives, Childhood, Mobile PhoneAbstract
In the digital age, smartphones have become ubiquitous, permeating all aspects of daily life. This presents a unique challenge for parents, particularly housewives, who play a critical role in managing early childhood exposure to digital media. Our research seeks to explore how housewives in Pasuruan Regency navigate the complexities of supervising their children's smartphone use. We aim to address the following questions: How are housewives managing their children's screen time? What strategies are they employing to ensure safe and constructive use of mobile phones?
Downloads
References
Ashiquzzaman, A., Min Oh, S., Lee, D., Lee, J., & Kim, J. (2021). Context-Aware Deep Convolutional Neural Network Application for Fire and Smoke Detection in Virtual Environment for Surveillance Video Analysis. Smart Innovation, Systems and Technologies, 182, 459–467. https://doi.org/10.1007/978-981-15-5224-3_46
Baede, V. O., David, M. Z., Andrasevic, A. T., Blanc, D. S., Borg, M., Brennan, G., Catry, B., Chabaud, A., Empel, J., Enger, H., Hallin, M., Ivanova, M., Kronenberg, A., Kuntaman, K., Larsen, A. R., Latour, K., Lindsay, J. A., Pichon, B., Santosaningsih, D., … Vos, M. C. (2022). MRSA surveillance programmes worldwide: moving towards a harmonised international approach. International Journal of Antimicrobial Agents, 59(3). https://doi.org/10.1016/j.ijantimicag.2022.106538
Banville, F., Milhomme, D., Perron, A., Pinard, J., Houle, J., Therrien, D., Peguero-Rodriguez, G., Charette, S., Ménélas, B. A., Trépanier, M., & Bouchard, S. (2023). Using Virtual Reality to Improve Nurses’ Students’ Clinical Surveillance in a Critical Care Context: A Psychological Perspective on Learning. Annual Review of CyberTherapy and Telemedicine, 21, 245–251. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b%5C&scp=85182468511%5C&origin=inward
Bibri, S. E., & Allam, Z. (2022a). Correction: The Metaverse as a Virtual Form of Data-Driven Smart Urbanism: On Post-Pandemic Governance through the Prism of the Logic of Surveillance Capitalism (Smart Cities (2022), 5, (715-727), 10.3390/smartcities5020037). Smart Cities, 5(4), 1241–1242. https://doi.org/10.3390/smartcities5040063
Bibri, S. E., & Allam, Z. (2022b). The Metaverse as a Virtual Form of Data-Driven Smart Urbanism: On Post-Pandemic Governance through the Prism of the Logic of Surveillance Capitalism. Smart Cities, 5(2), 715–727. https://doi.org/10.3390/smartcities5020037
Binsch, O., Oudejans, N., van der Kuil, M. N. A., Landman, A., Smeets, M. M. J., Leers, M. P. G., & Smit, A. S. (2023). The effect of virtual reality simulation on police officers’ performance and recovery from a real-life surveillance task. Multimedia Tools and Applications, 82(11), 17471–17492. https://doi.org/10.1007/s11042-022-14110-5
Bourke, M., Williams, N., Dowdall, J., & Barry, M. C. (2023). Establishment of a clinical nurse specialist-led, virtual aneurysm surveillance clinic. Vascular, 31(4), 749–757. https://doi.org/10.1177/17085381221080001
Braack, L., Wulandhari, S. A., Chanda, E., Fouque, F., Merle, C. S., Nwangwu, U., Velayudhan, R., Venter, M., Yahouedo, A. G., Lines, J., Aung, P. P., Chan, K., Abeku, T. A., Tibenderana, J., & Clarke, S. E. (2023). Developing African arbovirus networks and capacity strengthening in arbovirus surveillance and response: findings from a virtual workshop. Parasites and Vectors, 16(1). https://doi.org/10.1186/s13071-023-05748-7
Davis, C., Faruki, A., Breyer, D., Cumbler, E., Fisher, B., Hassell, A., Hess, S., Pierce, R., Wiler, J., & Zane, R. (2022). The Case for Virtual Sepsis Surveillance and Intervention. Telemedicine and E-Health, 28(1), 102–106. https://doi.org/10.1089/tmj.2020.0513
De Bruyne, J., Joundi, J., Morton, J., Van Kets, N., Van Wallendael, G., Talsma, D., Saldien, J., De Marez, L., Durnez, W., & Bombeke, K. (2021). Smooth Operator: A Virtual Environment to Prototype and Analyse Operator Support in CCTV Surveillance Rooms. Communications in Computer and Information Science, 1420, 233–240. https://doi.org/10.1007/978-3-030-78642-7_31
Ebied, M., & Chan, V. (2021). Multidisciplinary Professional Roles Addressing Needs in Multiple Myeloma: An Innovative ‘Virtual’ Pharmacist Surveillance Clinic. Seminars in Oncology Nursing, 37(4). https://doi.org/10.1016/j.soncn.2021.151173
Edwards, G. C., Broman, K. K., Martin, R. L., Smalley, W. E., Smith, L. A., Snyder, R. A., Solórzano, C. C., Dittus, R. S., & Roumie, C. L. (2020). Virtual Colorectal Cancer Surveillance: Bringing Scope Rate to Target. Journal of the American College of Surgeons, 231(2), 257–266. https://doi.org/10.1016/j.jamcollsurg.2020.05.011
Elsmore, A., Redjepova, O., Wright, J., Malarselvi, M., & Karkhanis, P. (2022). Tailoring the response to COVID-19: experiences of an inner city maternity unit with a virtual patient surveillance approach. Journal of Obstetrics and Gynaecology, 42(6), 1715–1721. https://doi.org/10.1080/01443615.2022.2033965
Gulati, S., Dubois, P., Carter, B., Cornelius, V., Martyn, M., Emmanuel, A., Haji, A., & Hayee, B. (2019). A randomized crossover trial of conventional vs virtual chromoendoscopy for colitis surveillance: Dysplasia detection, feasibility, and patient acceptability (CONVINCE). Inflammatory Bowel Diseases, 25(6), 1096–1106. https://doi.org/10.1093/ibd/izy360
Hardiansyah, F., & Mas’odi, M. (2020). Implementasi Nilai Religius Melalui Budaya Sekolah: Studi Fenomenologi. Autentik : Jurnal Pengembangan Pendidikan Dasar, 4(1), 15–24. https://doi.org/10.36379/autentik.v4i1.49
Heidary, M., Pour, E. S., Noori, A., & Bagha, M. A. (2022). Optimisation of energy consumption in cloud video surveillance centre based on monitoring and placement of virtual machines. International Journal of Computer Applications in Technology, 70(2), 94–103. https://doi.org/10.1504/IJCAT.2022.130295
Huang, J., Huang, A., & Wang, L. (2020). Intelligent video surveillance of tourist attractions based on virtual reality technology. IEEE Access, 8, 159220–159233. https://doi.org/10.1109/ACCESS.2020.3020637
Jacintha, V., Murugan, K. H. S., Gomathi, M., Gency, T., Jenifer, J., & Jesy, J. (2020). Virtual learning surveillance processing. Journal of Physics: Conference Series, 1706(1). https://doi.org/10.1088/1742-6596/1706/1/012144
Janke, M. J., Santiago, S., Straubhar, A. M., & Uppal, S. (2022a). The utility of physical examination in ovarian cancer recurrence detection: a retrospective analysis informing virtual surveillance care. International Journal of Gynecological Cancer, 32(7), 913–917. https://doi.org/10.1136/ijgc-2022-003506
Janke, M. J., Santiago, S., Straubhar, A. M., & Uppal, S. (2022b). The Utility of Physical Examination in Ovarian Cancer Recurrence Detection: A Retrospective Analysis Informing Virtual Surveillance Care. Obstetrical and Gynecological Survey, 77(10), 584–585. https://doi.org/10.1097/OGX.0000000000001085
Kandiah, K., Subramaniam, S., Thayalasekaran, S., Chedgy, F. J. Q., Longcroft-Wheaton, G., Fogg, C., Brown, J. F., Smith, S. C. L., Iacucci, M., & Bhandari, P. (2021). Multicentre randomised controlled trial on virtual chromoendoscopy in the detection of neoplasia during colitis surveillance high-definition colonoscopy (the VIRTUOSO trial). Gut, 70(9), 1684–1690. https://doi.org/10.1136/gutjnl-2020-320980
Kumar, M., Ray, S., & Yadav, D. K. (2023). Moving human detection and tracking from thermal video through intelligent surveillance system for smart applications. Multimedia Tools and Applications, 82(25), 39551–39570. https://doi.org/10.1007/s11042-022-13515-6
Lee, S., Lee, S., Choi, Y., Ben-Othman, J., Mokdad, L., Hwang, K. Il, & Kim, H. (2023). Task-Oriented Surveillance Framework for Virtual Emotion Informatics in Polygon Spaces. IEEE Wireless Communications, 30(3), 104–111. https://doi.org/10.1109/MWC.001.2200454
Lee, S., Lee, S., Choi, Y., Ben-Othman, J., Mokdad, L., Jun, K., & Kim, H. (2023). Affective Surveillance Management in Virtual Emotion Based Smart Complex Infrastructure. IEEE Communications Magazine, 61(10), 62–68. https://doi.org/10.1109/MCOM.003.2200798
Lee, S., Lee, S., Choi, Y., & Kim, H. (2023). Trustworthy clash-free surveillance using virtual emotion detection in 6G-assisted graded districts. ICT Express, 9(4), 754–760. https://doi.org/10.1016/j.icte.2022.07.012
Lee, S., Lee, S., Choi, Y., Son, J., Bellavista, P., & Kim, H. (2023). Cooperative Obstacle-Aware Surveillance for Virtual Emotion Intelligence with Low Energy Configuration. Drones, 7(3). https://doi.org/10.3390/drones7030159
Lee, T., Ben-Othman, J., & Kim, H. (2023). Maximum Activation 3D Cube Transition System for Virtual Emotion Surveillance. IEEE Communications Letters, 27(7), 1913–1916. https://doi.org/10.1109/LCOMM.2023.3272671
Lyu, Z., & Zhang, B. (2023). Apron surveillance video coding based on compositing virtual reference frame with object library. IET Image Processing, 17(8), 2475–2488. https://doi.org/10.1049/ipr2.12810
Maltsev, A. V. (2022). Computer Simulation of Video Surveillance Complexes in Virtual Environment Systems. Scientific Visualization, 14(2), 88–97. https://doi.org/10.26583/sv.14.2.08
Mas’odi, M. (2014). Koherensi Program Pembentukan Kepribadian dan Kepemimpinan Universitas Muhammadiyah Malang dalam Pengembangan Pendidikan Karakter dan Budaya Bangsa. https://doi.org/10.22219/jkpp.v2i2.1916
Mas’odi, M., Syaifuddin, M., & Amirullah, A. (2020). Pengembangan Karakter Siswa Melalui Kegiatan Home Visit (Studi Kasus Tingkat Sekolah Dasar di Kabupaten Sumenep). Jurnal Pemikiran Dan Pengembangan Sekolah Dasar (JP2SD), 8(2), 107–117. https://doi.org/10.22219/jp2sd.v8i2.11734
McKimm-Breschkin, J. L., Hay, A. J., Cao, B., Cox, R. J., Dunning, J., Moen, A. C., Olsen, D., Pizzorno, A., & Hayden, F. G. (2022). COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment – Meeting report from an isirv-WHO virtual conference. Antiviral Research, 197. https://doi.org/10.1016/j.antiviral.2021.105227
Mira, F. (2021). From molecular surveillance to electronic health data and back: creating virtual biobanks for infectious diseases of companion animals. Veterinary Record, 189(6), 241–243. https://doi.org/10.1002/vetr.998
Mulhall, J., Donohoe, F., Moran, S., Corry, E., Glennon, K., Broderick, S., Nixon, E., Tara, S., Lennon, O., McVey, R., Thompson, C., Boyd, W., Walsh, T., & Brennan, D. J. (2021). From physical to virtual: How the COVID-19 pandemic changed a tertiary gynaecologic oncology surveillance program in Ireland. Gynecologic Oncology Reports, 37. https://doi.org/10.1016/j.gore.2021.100804
Nawaratne, R., Alahakoon, D., De Silva, D., & Yu, X. (2020). Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Transactions on Industrial Informatics, 16(1), 393–402. https://doi.org/10.1109/TII.2019.2938527
Nurwidodo, N., Rahardjanto, A., Husamah, H., Mas’odi, M., & Mufrihah, A. (2017). Teacher Resilience in Remote Islands Area: A Case Study in Small Pagerungan Island Sumenep Regency, Indonesia. Journal of Education and Learning (EduLearn), 11(1), 47–56. https://doi.org/10.11591/edulearn.v11i1.4669
Ortiz, Y. E. S., & Lopez, J. J. S. (2023). Prioritization of strategies and platforms for the automation of attention in the virtual classroom and its impact on the teaching-learning process through a process of Technological Surveillance. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2023-July. https://doi.org/10.18687/laccei2023.1.1.1669
Patterson, E. (2021). Maintaining Transmission: DirecTV’s Work-at-home Technical Support, Virtual Surveillance, and the Gendered Domestication of Distributive Labor. Television and New Media, 22(6), 633–653. https://doi.org/10.1177/1527476420928552
Pechenkin, V., Dolinina, O., Brovko, A., & Korolev, M. (2021). Analysis of 3D Scene Visual Characteristics Based on Virtual Modeling for Surveillance Sensors Parameters. Studies in Systems, Decision and Control, 337, 328–340. https://doi.org/10.1007/978-3-030-65283-8_27
Pechenkin, V., Korolev, M., Kuznetsova, K., & Piminov, D. (2019). Analysis of three-dimensional scene visual characteristics based on virtual modeling and parameters of surveillance sensors. Studies in Systems, Decision and Control, 199, 552–562. https://doi.org/10.1007/978-3-030-12072-6_45
Pérez-Hernández, F., Tabik, S., Lamas, A., Olmos, R., Fujita, H., & Herrera, F. (2020). Object Detection Binary Classifiers methodology based on deep learning to identify small objects handled similarly: Application in video surveillance. Knowledge-Based Systems, 194. https://doi.org/10.1016/j.knosys.2020.105590
Rava, R., Ivanovs, M., Skadins, A., & Nesenbergs, K. (2020). World Coordinate Virtual Traffic Cameras: Edge-Based Transformation and Merging of Multiple Surveillance Video Sources. 2020 7th International Conference on Soft Computing and Machine Intelligence, ISCMI 2020, 233–236. https://doi.org/10.1109/ISCMI51676.2020.9311597
Ridwan, M., & Mas’odi , M. (2017). Tradisi Nyanyian Anak Terhadap Pembentukan Karakter Anak Usia Sekolah Dasar. Sekolah Dasar: Kajian Teori Dan Praktik Pendidikan, 26(1), 49–61. https://doi.org/10.17977/um009v26i12017p049
Salgado Reyes, N., & Trujillo, G. (2023). Develop a Virtual Learning Environment (Eva) to Train Agents in Security and Private Surveillance. Smart Innovation, Systems and Technologies, 337 SIST, 167–185. https://doi.org/10.1007/978-981-19-9099-1_12
Singh, A., Singh, N., Agrawal, T., & Chauhan, Y. K. (2019). Wireless control of unmanned vehicle for surveillance using virtual reality technology. 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018, 725–731. https://doi.org/10.1109/GUCON.2018.8674903
Sreenu, G., & Saleem Durai, M. A. (2019). Intelligent video surveillance: a review through deep learning techniques for crowd analysis. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0212-5
Srivastava, G., Kumar, S., & Yadav, K. (2023). Virtual Surveillance Assistant: Converging Computer Vision, NLP, and Chatbot Technologies via Azure Cognitive Services. ACM International Conference Proceeding Series. https://doi.org/10.1145/3647444.3647877
Stack, R., Doherty, J., O’Moráin, N., Nolan, B., Sheridan, J., Cullen, G., Mulcahy, H., Buckley, M., Horgan, G., Hamed, M., McDermott, E., & Doherty, G. (2023). Implementation of BSG/ACPGBI/PHE polypectomy surveillance guidelines safely reduces the burden of surveillance in a screening cohort: A virtual model study. BMJ Open Gastroenterology, 10(1). https://doi.org/10.1136/bmjgast-2023-001160
Stahlman, S. L. (2022). Brief Report: Phase I Results Using the Virtual Pooled Registry Cancer Linkage System (VPR-CLS) for Military Cancer Surveillance. Medical Surveillance Monthly Report, 29(7), 26–27. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b%5C&scp=85139022859%5C&origin=inward
Stein, G. J. (2020). Immersion and Surveillance in Virtual Worlds. The Projected and Prophetic: Humanity in Cyberculture, Cyberspace, and Science Fiction, 59–68. https://doi.org/10.1163/9781848880870_008
Ta, B., Depczynski, B., Ericksson, W., Siklosi, B., Popovic, G., O’Sullivan, A., & Lau, S. M. (2023). Decreased rates of hospital-acquired infection after introduction of an active surveillance, virtual glucose management system. Diabetes Research and Clinical Practice, 203. https://doi.org/10.1016/j.diabres.2023.110880
Vanderhout, S., Rosenfield, D., & Goldbloom, E. B. (2023). A Canadian Paediatric Surveillance Program study to guide safe integration of virtual care for children. Paediatrics and Child Health (Canada), 28(8), 468–469. https://doi.org/10.1093/pch/pxad059
Verma, Y. (2023). Video surveillance framework using virtual reality interface. Artificial Intelligence for Virtual Reality, 15–26. https://doi.org/10.1515/9783110713817-002
Wang, S. H., Yimer, G., Bisesi, M., Lisawork, L., Sugerman, D., Alayu, M., Wossen, M., Abayneh, S. A., Gallagher, K., Endashaw, T., Kubinson, H., Kanter, T., Gallagher, K., & Gebreyes, W. (2022). Rapid virtual training and field deployment for COVID-19 surveillance officers: experiences from Ethiopia. Pan African Medical Journal, 43. https://doi.org/10.11604/pamj.2022.43.23.28787
Zhang, Y., Xie, Y., Zhang, Y., Dai, Y., & Ren, F. (2022). VSSum: A Virtual Surveillance Dataset for Video Summary. ACM International Conference Proceeding Series, 113–119. https://doi.org/10.1145/3561613.3561631

Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Suadi Suadi, M. Tarwi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.