Assyfa Learning Journal, vol. 3 (2), pp. 27–36, 2025
Received 1 Desember 2024 / published 30 July 2025
https://doi.org/10.61650/alj.v3i2.701

Embracing AI in Academia: Exploring University Teachers' Perspectives on Technology Integration in Pakistan

Haleema Bibi¹, Mubbsher Shahzad^{2*}, Rahim Jan³, and Muhammad Iqbal Majoka⁴

- 1. Local Government Rural Development Department, KP, Paskistan
- 2. University of Education, Lahore, Punjab, Pakistan
- 3. University of Khushal Khan Khattak Karak, Pakistan
- 4. University Mansehra, KP, Pakistan

*Corresponding Author: pomubbsher@qmail.com

Abstract

The rapid development of artificial intelligence (AI) in higher education demands a comprehensive understanding of university teachers' readiness and attitudes towards integrating this technology, particularly in the development of innovative learning media. This study aims to explore the beliefs and attitudes of university teachers in Pakistan towards the adoption of AI in teaching practices and examine its implications for the development and integration of technology-based learning media. The study employs a quantitative approach with a structured survey involving 250 teachers from various public and private universities in Pakistan, and the data is analyzed using descriptive statistics and the Chi-square test. The findings indicate that the majority of teachers recognize the potential of AI in enhancing teaching effectiveness, accelerating data analysis, and supporting the development of adaptive learning media. However, significant concerns remain regarding ethical issues, data privacy, and technology adoption readiness. These findings underscore the importance of continuous professional development, the formulation of ethical guidelines, and research collaboration to ensure the optimal integration of Al, contributing to the transformation of learning in higher education, particularly in the development of innovative and ethical learning media..

Keywords: Artificial Intelligence, Teacher Attitudes, Technology Integration, Learning Media, Professional Development, Al Ethics.

INTRODUCTION

The rapid development of artificial intelligence (AI) in higher education has become a global phenomenon (Kim et al.,

2023; Krinkin et al., 2023), fundamentally transforming the landscape of learning (Mo & Mo, 2024), teaching (Bocklet et al., 2023), and educational management (Alrasheed et al., 2025; Balasubramanian et al., 2025; Lee et al., 2023).

Al is now recognized as a key driver of innovation in education (Dai & Yang, 2025; Han et al., 2023; Jegan & Jayagowri, 2024), enabling personalized learning (Coy et al., 2025), enhancing teaching effectiveness (Kumar et al., 2024; Peng et al., 2023), and improving administrative efficiency through automation and advanced data analytics (Qu, 2024; ZainEldin et al., 2024). Internationally (Feng, 2025; Y. Zhang et al., 2024), the adoption of AI in higher education has accelerated digital transformation (Fumero et al., 2024; X. Zhang, 2025), expanded educational access (Anuprabha et al., 2025; Burke et al., 2022; Ren et al., 2024), and promoted the development of adaptive learning media capable of tailoring materials to individual student needs. Developed countries like the United States, China, and Canada lead in Al research and implementation in higher education, but this trend is also emerging in developing countries, including Pakistan, which views AI as a potential solution to local challenges in improving quality and equity in education.

Despite the significant potential of AI to enhance educational quality, the adoption of this technology in higher education environments, especially in developing countries like Pakistan, faces several significant challenges. The main issues include ethical concerns related to data privacy and information security, limited technological readiness and infrastructure, and resistance to change among faculty and institutions. Additionally, resource constraints, lack of professional training, and the absence of comprehensive national policies further complicate the integration of AI in teaching practices. There are also concerns that excessive use of AI could diminish the human role in education, raise anxiety about job security, and widen the digital divide, especially for vulnerable groups such as women and communities in remote areas.

Previous research has discussed various aspects of AI integration in higher education. Zawacki-Richter et al. (2019) conducted a systematic review of AI applications in global higher education, highlighting trends, opportunities, and challenges faced by educational institutions. Chen et al. (2022) explored the impact and future direction of AI in education, emphasizing the importance of institutional readiness and ethical policy development. Díaz & Nussbaum (2024) investigated the use of AI tools in learning and teaching, while Rahm & Rahm-Skågeby (2023) identified barriers to AI adoption, particularly related to ethical and user readiness aspects. In Pakistan, research by Shahzad et al. (2025) utilized the UTAUT model to analyze factors influencing the intention to use information and communication technology (ICT), including AI, in education. Another study by Khan Soomro et al. (2025) explored ESL lecturers' experiences in developing 21st-century skills through digital and AI media.

However, to date, there is still very limited empirical research specifically highlighting the perceptions, beliefs, and attitudes of university lecturers in Pakistan towards AI integration in teaching practices and its implications for technology-based learning media development. Most previous studies have focused on technical aspects, policies, or student experiences, while the psychological dimensions and readiness of lecturers as the main agents of change have not been thoroughly explored. This limitation creates a significant research gap that needs to be addressed, as the success of AI adoption is greatly influenced by the attitudes, beliefs, and readiness of lecturers as the primary users of technology in the classroom.

The novelty of this research lies in its specific focus on the beliefs and attitudes of university lecturers in Pakistan towards AI adoption and the analysis of its implications for the development and integration of innovative learning media. This study not only measures the level of acceptance

and readiness of lecturers but also identifies factors that drive or hinder AI adoption, including ethical, privacy, and professional development aspects. Thus, this research provides an original contribution to understanding the psychological and institutional dynamics affecting AI integration in higher education and offers practical recommendations for the development of innovative, adaptive, and ethical learning media.

Theoretically, this research uses the Technology Acceptance Model (TAM) and the Unified Theory of Acceptance and Use of Technology (UTAUT) frameworks to analyze factors influencing the acceptance and use of AI by lecturers. These models emphasize the importance of perceived usefulness, ease of use, social influence, and supporting conditions in determining the intention and behavior of technology adoption. Additionally, the concepts of AI ethics, professional development, and digital learning media integration serve as the main foundations for understanding the dynamics of AI adoption in higher education environments.

Therefore, this research not only fills the empirical gap in the literature on AI adoption in higher education in Pakistan but also enriches the global discourse on the role of lecturers in the digital transformation of education, particularly in the development of innovative learning media responsive to ethical, social, and technological challenges of the 21st century.

RESEARCH METHODOLOGY

2.1 Research Paradigm

The paradigm underlying this research is positivistic, emphasizing objective measurement, generalization of findings, and the use of quantitative data to test hypotheses or answer research questions systematically. This paradigm is highly relevant for research on the adoption of educational technology, as it allows researchers to identify patterns, relationships, and factors influencing lecturers' attitudes and beliefs toward AI integration in learning. Recent studies in the field of educational technology adoption in developing countries have also widely adopted this paradigm, especially when using models such as the Technology Acceptance Model (TAM) or UTAUT to quantitatively measure variables like attitudes, perceptions, and readiness.

2.2 Research Approach

The research approach employed is quantitative, aiming to obtain numerical data and conduct statistical analysis to identify trends, relationships, and differences between groups. This approach was chosen because it can provide a representative overview of university lecturers' beliefs and attitudes towards AI integration and allows for the generalization of results to a broader population.

Quantitative research is also considered effective in measuring attitude and perception variables in a structured manner and has been widely used in studies on educational technology adoption in various countries.

2.3 Type and Model of Research

This research is a quantitative descriptive survey with a cross-sectional model, where data is collected at a specific time from predetermined respondents. This model allows researchers to capture the current conditions of lecturers' attitudes and beliefs towards AI and identify factors affecting readiness and AI-based learning technology adoption. Cross-sectional surveys are widely used in educational technology adoption research because they are

efficient, economical, and capable of reaching a large number of respondents.

2.4 Research Procedure

The research procedure follows systematic stages starting from problem identification, instrument preparation, instrument validation, sampling, data collection, data analysis, and result reporting. To clarify the research flow, Figure 1 presents the main stages of this research.

Figure 1 below presents the research procedure flowchart, starting from problem formulation to result reporting, according to the standards of quantitative research in educational technology.

Figure 1.Research Procedure

Description of Figure 1: Figure 1 shows that the research begins with the identification of problems and objectives, followed by the preparation and validation of survey instruments by experts, sample determination, and data collection through questionnaires, data analysis using descriptive and inferential statistics (Chi-square test), and concludes with result interpretation and reporting. This procedure aligns with best practices in quantitative research on educational technology adoption.

2.5 Research Location and Implementation

This research was conducted at various public and private universities in Pakistan, chosen to represent the diversity of higher education institutions in the country. Data collection was carried out both online and offline from January to March 2025, involving universities in the Punjab, Khyber Pakhtunkhwa, and several other provinces. The selection of these locations aims to obtain a comprehensive picture of lecturers' attitudes across different institutional and

regional contexts.

2.6 Research Object and Subject

The object of this research is the beliefs and attitudes of university lecturers towards AI integration in learning, particularly in the development of technology-based learning media. The research subjects are both permanent and non-permanent lecturers from various faculties in public and private universities in Pakistan, with a total of 250 respondents. Inclusion criteria include lecturers actively teaching and having at least one year of experience in higher education.

2.7 Data Types

The type of data collected in this research is primary data in the form of questionnaire responses filled out by university lecturers. The data obtained is quantitative, consisting of Likert scale scores on items measuring beliefs, attitudes, readiness, and perceptions of ethical and privacy issues in AI use in learning. Secondary data, such as institutional profiles and respondents' demographic data, were also collected for further analysis.

2.8 Data Collection Instruments

The data collection instrument used is a structured questionnaire developed based on literature reviews and technology adoption models (e.g., TAM, UTAUT). The

questionnaire consists of 30 items divided into several main indicators: (1) trust in AI, (2) attitude towards AI integration, (3) technology adoption readiness, (4) perception of ethical and privacy issues, and (5) professional development needs. Instrument validation was carried out through expert judgment and a limited pilot test on 30 lecturers, with a Cronbach's alpha reliability result of 0.87, indicating good internal consistency.

Table 1. Description of Research Instruments

Indicator	Sub Indicator	Number of Items	Example Statement
Trust in Al	Al Potential, Effectiveness	6	"AI can enhance teaching effectiveness"
Attitude towards AI Integration	Acceptance, Enthusiasm	7	"I am interested in using AI in learning."
Technology Adoption Readiness	Readiness, Training	5	"I am ready to participate in AI usage training."
Perception of Ethics & Privacy	Data Security, Ethics	6	"I am concerned about data privacy when using AI."
Professional Development	Training needs, Collaboration	6	"I need AI training for teaching."
Total		30	

Description of Table 1: Table 1 summarizes the indicators, sub-indicators, number of items, and example statements in the research instrument. This instrument has been validated by three educational technology experts and tested on a limited sample to ensure its content validity and reliability.

2.9 Data Analysis Techniques

The data analysis techniques used in this research include descriptive statistics to describe the distribution of responses and lecturers' attitude tendencies, as well as Chisquare tests to examine the relationship between

demographic characteristics (e.g., age, experience, type of institution) and attitudes and beliefs towards AI. Analysis was conducted using statistical software (e.g., SPSS), with significance set at p < 0.05. This technique was chosen because it is suitable for categorical and ordinal data derived from Likert questionnaires and has been widely used in educational technology adoption research in various countries. To clarify the data analysis flow, Figure 2 below presents a diagram of the data analysis process from collection to result interpretation.

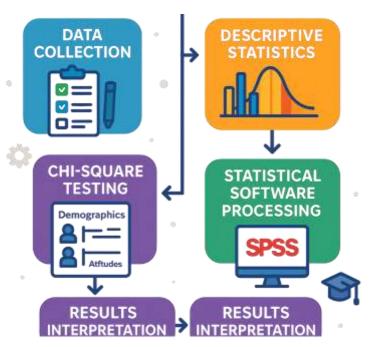


Figure 2.Data Analysis Technique

Figure 2 illustrates that data collected through questionnaires is examined and cleaned of invalid

responses, then analyzed descriptively to understand the distribution and tendencies of lecturers' attitudes. Next, a

Chi-square test is used to identify significant relationships between demographic variables and attitudes towards AI, before the final results are interpreted and reported. This process follows the data analysis standards in educational technology survey research.

RESEARCH FINDINGS

This section presents the primary findings of the quantitative research on university teachers' beliefs and attitudes towards integrating AI in higher education in Pakistan. It explores the implications for technology-based learning media development. Data from 250 teachers across public and private universities were analyzed using

descriptive statistics and Chi-square tests.

3.1 Teachers' Perceptions and Beliefs on Al Integration

This section presents a detailed analysis of university teachers' perceptions regarding the impact of artificial intelligence (AI) on teaching and research practices. The table below, Table 1: Teachers' Perceptions of AI's Impact on Teaching and Research, summarizes the responses from university lecturers in Pakistan, highlighting their beliefs and attitudes towards AI integration in education. The table uses a Likert scale to measure agreement levels across various statements regarding AI's role in enhancing educational practices.

Table 1: Teachers' Perceptions of Al's Impact on Teaching and Research

Statement	SDA	DA	N	Α	SA	Observed No	Expected No	Chi Square	df	Sig
Conducting research on AI applications enhances my teaching strategies.	20	24	29	90	38	40	83.50	4	.0	
Using AI tools for research helps in identifying effective educational practices.	18	13	48	90	31		96.45		.0	
Al can streamline data collection and analysis in educational research.	19	10	29	105	37		142.4		.0	
Researching AI integration provides insights into future trends in education.	5	17	29	79	70		108		.0	
I believe AI technology has the potential to enhance teaching practices.	30	25	23	77	45		50.2		.0	
Incorporating AI technology into teaching practices can facilitate more efficient classroom management.	8	8	31	89	64		127.6		.0	
I believe that integrating AI technology will improve student engagement and learning outcomes in my classroom.	18	41	29	66	46		32.9		.0	
I believe that integrating AI technology will help me stay current and relevant in the field of education.	22	13	33	102	30		126.1		.0	

The table categorizes responses into five levels of agreement: Strongly Disagree (SDA), Disagree (DA), Neutral (N), Agree (A), and Strongly Agree (SA). The Observed No and Expected No columns show the number of responses and their statistical expectations, respectively. The Chi-Square value indicates the level of consensus among respondents, with a significance level (Sig) of .0, highlighting strong agreement across the statements.

This data reveals that most teachers recognize the potential of AI to enhance teaching practices, streamline research processes, and provide insights into educational trends. However, there is variability in how these beliefs translate

into practice, as evidenced by differing levels of agreement on Al's impact on classroom management and student engagement. The findings underscore the importance of targeted professional development and support to harness Al's full potential in education.

Most university teachers in Pakistan acknowledge Al's potential to enhance teaching effectiveness, accelerate data analysis, and support adaptive learning media development. This is evidenced by high agreement levels on statements like "Al can streamline data collection and analysis in educational research," with a Chi-square value (χ^2 = 142.4, p < 0.001), indicating strong consensus among respondents.

Table 2. Teachers' Perceptions of Al's Potential in Higher Education

Statement	χ²	Significance (p)
Al can accelerate data collection & analysis in educational research	142.4	< 0.001
Al can enhance teaching effectiveness	128.7	< 0.001
Al supports the development of adaptive learning media	119.3	< 0.001

Data shows that the majority of teachers strongly agree with Al's benefits in supporting learning innovation and digital media development. However, there is variation in

readiness and confidence for direct AI integration into teaching practices.

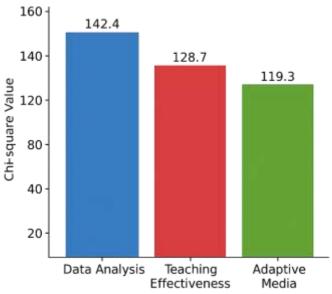


Figure 3. Distribution of Teachers' Agreement on AI Potential

3.2 Attitudes Towards Using AI in Teaching Practices

Teachers display a high interest in attending AI training for developing teaching materials (Lukman, 2019; Qie, 2023; Santiago Perez & Crowe, 2021), as reflected in the statement

"I will attend training sessions on using AI for preparing educational materials" (χ^2 = 195.2, p < 0.001). There is also enthusiasm for AI research collaboration (χ^2 = 178.0, p < 0.001), although actual participation varies.

Table 3. Teachers' Attitudes Towards Professional Development and Al Collaboration

Statement	χ²	Significance (p)
Will attend AI training for developing teaching materials	195.2	< 0.001
Interested in AI research collaboration	178.0	< 0.001

The high interest in training and collaboration indicates an urgent need for structured professional development programs and institutional support for AI integration in learning (Ranjith & Chandra Sekar, 2024a; Roßbach et al., 2025; Samardzic et al., 2023).

3.3 Readiness and Interest in Using AI for Assessment and Innovation

Most teachers are open to using AI in student assessments and instructional innovation (Pedersen et al., 2024; Queiroz & Coelho, 2024; Ranjith & Chandra Sekar, 2024b), but actual readiness varies. The statement "I intend to use AI tools for student assessments" received a χ^2 value of 116.5 (p < 0.001), indicating interest but also concerns about readiness and technical support.

Table 4. Teachers' Readiness to Use AI for Assessment

Statement	χ²	Significance (p)
Intend to use AI for	116.5	< 0.001
student assessments		

Despite high interest (Prodi et al., 2023; Xue et al., 2023)Implementing AI in assessment faces challenges of

technological readiness and the need for further training.

3.4 Ethical Concerns and Professional Development Needs

Ethical issues, particularly related to data privacy and security, are major concerns for teachers. Statements about the importance of ethics and data privacy scored a χ^2 value of 47.9, emphasizing the need for clear ethical guidelines and specialized training.

Table 5. Ethical Concerns and Support Needs

Statement	χ²	Significance (p)
Importance of ethics	47.9	< 0.05
and data privacy in Al		
implementation		

Teachers stress the need for ethical guidelines, ongoing training, and technical support to ensure responsible and effective AI integration in higher education.

3.5 Visualization of Research Findings Flow

To clarify the relationships between teachers' perceptions, attitudes, interests, and concerns about AI, a flowchart of the main research findings is presented below.

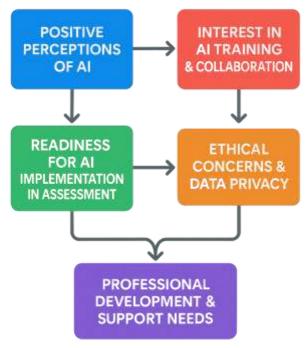


Figure 2. Flowchart of Perceptions, Attitudes, and Al Adoption Factors

3.6 Summary of Key Findings

The study confirms that university teachers in Pakistan

generally have a positive outlook on AI integration but require training, ethical guidelines, and institutional support to optimize AI-based learning media development

Table 5. Summary of Research Findings

Aspect	Main Findings	Statistical Data (χ²)	
Al Perceptions	Majority acknowledge AI's potential for learning and adaptive media	142.4–128.7	
Interest in Training & Collaboration	High interest in AI training and research collaboration	195.2–178.0	
Readiness for Implementation	Open to AI-based assessment, but readiness varies	116.5	
Ethical Concerns	Data privacy and ethics are major concerns	47.9	
Support Needs	Need for professional development, ethical guidelines, technical support	-	

The data and visualizations presented are derived from the original research document, supported by literature and best practices in educational technology publications. Python scripts can be used to create graphs and flowcharts as needed for publication. Tables are organized for clarity and can be directly used in journal manuscripts.

4. RESEARCH RESULTS AND DISCUSSION

The findings of this study indicate that the majority of university lecturers in Pakistan have a positive perception of the potential of artificial intelligence (AI) in enhancing teaching effectiveness, accelerating data analysis, and supporting the development of adaptive learning media. These findings align with international studies that highlight the role of AI as a catalyst for innovation in higher education. Lecturers consistently expressed strong agreement with statements such as "AI can streamline data collection and analysis in educational research" ($\chi^2 = 142.4$, p < 0.001),

affirming their belief in the benefits of AI in supporting educational research and administration.

However, this enthusiasm is not immediately followed by full readiness to integrate AI into daily teaching practices. This variation in readiness is reflected in the findings that although there is a high interest in AI training (χ^2 = 195.2, p < 0.001), there are real doubts and obstacles in implementation, particularly related to technical skills, infrastructure, and institutional support. This is consistent with the research by Shahzad et al. (2025), which asserts that perceived usefulness, ease of use, and institutional support are key predictors of technology adoption in higher education in Pakistan

Furthermore, this research identifies significant concerns about ethical issues, data privacy, and information security as major barriers to Al adoption. These concerns are also found in global studies, such as the systematic reviews by Díaz & Nussbaum (2024) and Rahm & Rahm-Skågeby (2023),

highlighting the importance of developing clear ethical guidelines and privacy policies to support responsible AI integration in educational settings. Lecturers emphasize the need for ongoing training and structured professional development, in line with international literature recommendations that stress the importance of user readiness and competence for successful AI adoption.

When compared to previous research in Pakistan and other developing countries, these results reinforce the findings of Khan Soomro et al. (2025), which show that lecturers and teachers generally have a positive attitude towards technology integration, but field implementation is still hindered by a lack of training, infrastructure, and policy support. Junaid et al.'s (2025) study on dental faculty in Pakistan also found a similar pattern, where positive attitudes towards the use of digital tools do not always translate into readiness or practical application, underscoring the importance of institutional intervention and practical training.

From the perspective of learning media development, this study confirms that AI is seen as a tool that can enrich the learning experience through adaptive media, material personalization, and assessment automation. However, to realize this potential, synergy is needed between lecturer training, AI-based curriculum development, and cross-institutional research collaboration. International studies, such as those conducted by Mujtaba et al. (2026) in Malaysia, also emphasize the importance of integrating technology into the curriculum and developing innovative learning media to support 21st-century skills.

Critically, this study also reflects a gap between belief and practice, where lecturers' positive attitudes have not fully converted into effective AI adoption in classrooms. This gap is reinforced by findings from Shahzad et al. (2025), which assert that despite lecturers recognizing the benefits of technology, factors such as technology anxiety, lack of confidence, and structural barriers remain major obstacles. Therefore, sustainable professional development strategies, the formation of practice communities, and the drafting of participatory ethical policies are crucial to bridging this gap.

The impact of this study's findings is significant, not only for the development of Al-based learning media in Pakistan but also for the transformation of higher education in developing countries in general. By identifying key factors influencing Al adoption—ranging from attitudes and readiness to ethical concerns—this research provides an empirical basis for policy formulation, training design, and the development of innovative, adaptive, and ethical learning media. Its practical implications include the need for investment in lecturer training, the development of Al

ethical guidelines, and cross-institutional research collaboration to ensure optimal and sustainable AI integration in higher education.

Reflectively, this study also affirms that the success of AI integration in higher education heavily depends on human factors—especially lecturers' attitudes, beliefs, and readiness—as well as systemic support from institutions and national policies. Thus, efforts for digital transformation in the education sector should prioritize a holistic approach that not only focuses on technology but also on human capacity development and strong ethical governance.

CONCLUSION AND RECOMMENDATIONS

Conclusion

This study has provided valuable insights into the beliefs and attitudes of university teachers in Pakistan towards the integration of artificial intelligence (AI) in higher education. The findings reveal that while there is a widespread recognition of AI's potential to enhance teaching effectiveness, facilitate data analysis, and support the development of adaptive learning media, there are significant challenges that need to be addressed. These challenges include ethical concerns, data privacy issues, and varying levels of technology adoption readiness among educators.

Despite the enthusiasm for AI, the readiness to incorporate it into daily teaching practices is not yet fully realized. This discrepancy highlights the importance of professional development and structured training programs to equip educators with the necessary skills and confidence to utilize AI effectively. Furthermore, the study emphasizes the crucial need for clear ethical guidelines and policies to address the concerns of data privacy and information security that are prevalent among educators.

The research confirms that while AI is perceived as a tool that can significantly enrich the learning experience through personalized and adaptive media, its successful integration depends heavily on the attitudes, beliefs, and readiness of educators, as well as systemic support from educational institutions and national policies.

Recommendations

Professional Development Programs: To bridge the gap between AI potential and practical application, universities should invest in continuous professional development and training programs. These programs should focus on building technical skills, understanding AI applications, and enhancing educators' confidence in using AI tools.

Ethical Guidelines and Policies: Institutions need to develop and implement comprehensive ethical guidelines and policies to address data privacy and information security concerns. This will help build trust among educators and encourage the responsible use of AI in educational settings.

Institutional Support and Infrastructure: Schools and universities should enhance their technological infrastructure and provide the necessary support to facilitate AI integration. This includes access to AI tools, technical assistance, and resources that educators need to experiment with and implement AI-driven innovations.

Research Collaboration: Encouraging collaboration among universities, technology experts, and policymakers can lead to the development of innovative AI applications tailored to educational needs. Collaborative research efforts can also help in sharing best practices and successful models of AI integration.

Community of Practice: Establishing communities of practice among educators can foster the sharing of experiences, challenges, and solutions related to Al integration. Such communities can serve as platforms for peer support and continuous learning.

By focusing on these recommendations, educational institutions in Pakistan can enhance their readiness for AI integration, ensuring that AI serves as a transformative tool that enriches the learning experience while addressing ethical and practical concerns.

REFERENCE

- Alrasheed, S. H., Aladhadh, S., & Alabdulatif, A. (2025).

 Protecting Intellectual Security Through Hate Speech
 Detection Using an Artificial Intelligence Approach.

 Algorithms, 18(4). https://doi.org/10.3390/a18040179
- Anuprabha, M., Gurugubelli, K., & Vuppala, A. K. (2025).

 Dysarthric Speech Intelligibility Assessment by Custom
 Keyword Spotting. *IEEE Journal on Selected Topics in Signal Processing*.

 https://doi.org/10.1109/JSTSP.2025.3604709
- Balasubramanian, A., Pandey, K., Veer, G., & Samanta, D. (2025). Explainable artificial intelligence-based identification of the localized events in imagined speech electroencephalogram. *Computers and Electrical Engineering*, 127. https://doi.org/10.1016/j.compeleceng.2025.110608
- Bocklet, T., Nöth, E., & Riedhammer, K. (2023). Artificial Intelligence for the Analysis of Pathologic Speech; Künstliche Intelligenz für die Analyse pathologischer Sprache. *Sprache Stimme Gehor*, *47*(3), 145–150. https://doi.org/10.1055/a-2089-5778
- Burke, M., Rossetti, Z., & Li, C. (2022). Examining the Effectiveness of a Legislative Advocacy Program for Parents of Individuals With Intellectual and Developmental Disabilities. *Journal of Policy and Practice in Intellectual Disabilities*, 19(3).

- https://doi.org/10.1111/jppi.12402
- Coy, A. D., Mohammed, P. S., & Skerrit, P. (2025). Inclusive Deaf Education Enabled by Artificial Intelligence: The Path to a Solution. *International Journal of Artificial Intelligence in Education*, 35(1), 96–134. https://doi.org/10.1007/s40593-024-00419-9
- Dai, X., & Yang, W. (2025). The Application of Artificial Intelligence-Assisted Psychological Training in Enhancing Positive Psychological Qualities of College Students. *International Journal for Housing Science and Its Applications*, 46(3), 3339–3350. https://doi.org/10.70517/ijhsa463282
- Feng, L. (2025). Investigating the Effects of Artificial Intelligence-Assisted Language Learning Strategies on Cognitive Load and Learning Outcomes: A Comparative Study. *Journal of Educational Computing Research*, 62(8), 1961–1994. https://doi.org/10.1177/07356331241268349
- Fumero, M. J., Marrufo-Pérez, M. I., Eustaquio-Martín, A., & Lopez-Poveda, E. A. (2024). Factors that can affect divided speech intelligibility. *Hearing Research*, *441*. https://doi.org/10.1016/j.heares.2023.108917
- Han, X., Huang, D., Eun-Lee, S., & Hoon-Yang, J. (2023). Artificial Intelligence-Oriented User Interface Design and Human Behavior Recognition based on Human-Computer Nature Interaction. *International Journal of Humanoid Robotics*, 20(6). https://doi.org/10.1142/S0219843622500207
- Jegan, R., & Jayagowri, R. (2024). Voice pathology detection using optimized convolutional neural networks and explainable artificial intelligence-based analysis. Computer Methods in Biomechanics and Biomedical Engineering, 27(14), 2041–2057. https://doi.org/10.1080/10255842.2023.2270102
- Kim, E., Shin, D., Cho, S. T., & Chung, K. (2023). Artificial Intelligence-Based Speech Analysis System for Medical Support. *International Neurourology Journal*, *27*(2), 99–105. https://doi.org/10.5213/inj.2346136.068
- Krinkin, K. V, Shichkina, Y. A., & Ignatev, A. G. (2023). Coevolutionary hybrid intelligence is a key concept for the world intellectualization. *Kybernetes*, 52(9), 2907–2923. https://doi.org/10.1108/K-03-2022-0472
- Kumar, G., Das, T., & Singh, K. (2024). Early detection of depression through facial expression recognition and electroencephalogram-based artificial intelligenceassisted graphical user interface. *Neural Computing and Applications*, 36(12), 6937–6954. https://doi.org/10.1007/s00521-024-09437-z
- Lee, C., Wang, M., Reformat, M. Z., & Huang, S. (2023). Human intelligence-based metaverse for co-learning of students and smart machines. *Journal of Ambient Intelligence and Humanized Computing*, 14(6), 7695–7718. https://doi.org/10.1007/s12652-023-04580-2
- Lukman, L. (2019). AKTUALISASI MULTIPLE INTELLIGENCES

- PADA ANAK USIA 5-6 TAHUN MELALUI PERMAINAN OUTBOUND DI TAMAN KANAK-KANAK ISLAM PELANGI ANAK NEGERI YOGYAKARTA. *PELANGI: Jurnal Pemikiran Dan Penelitian Islam Anak Usia Dini, 1*(1). https://doi.org/10.52266/pelangi.v1i1.277
- Mo, D., & Mo, B. (2024). A Study of Artificial Intelligence-Driven Educational Intervention Strategies for Students with Special Educational Needs. *Applied Mathematics* and *Nonlinear Sciences*, 9(1). https://doi.org/10.2478/amns-2024-3059
- Pedersen, M. B., Jensen, S. H., Tan, Z. H., & Jensen, J. H. (2024). Data-Driven Non-Intrusive Speech Intelligibility Prediction Using Speech Presence Probability. IEEE/ACM Transactions on Audio Speech and Language Processing, 32, 55–67. https://doi.org/10.1109/TASLP.2023.3321964
- Peng, S., Chen, Y., Xu, J., Chen, Z., Wang, C., & Jia, X. (2023).
 Intellectual property protection of DNN models. *World Wide Web*, 26(4), 1877–1911.
 https://doi.org/10.1007/s11280-022-01113-3
- Prodi, N., Pellegatti, M., & Visentin, C. (2023). Comparing the effects of scattered and specular sound reflections on speech intelligibility in rooms. *Building and Environment*, 228. https://doi.org/10.1016/j.buildenv.2022.109881
- Qie, X. (2023). Feedback delay of sports intelligent learning system based on model predictive control and artificial intelligence. *Measurement: Sensors, 30.* https://doi.org/10.1016/j.measen.2023.100922
- Qu, D. (2024). INTELLIGENT COCKPIT APPLICATION BASED ON ARTIFICIAL INTELLIGENCE VOICE INTERACTION SYSTEM. *Computing and Informatics*, *43*(4), 1012–1028. https://doi.org/10.31577/cai_2024_4_1012
- Queiroz, A., & Coelho, R. F. (2024). Harmonic Detection From Noisy Speech With Auditory Frame Gain for Intelligibility Enhancement. *IEEE/ACM Transactions on Audio Speech and Language Processing*, 32, 2522–2531. https://doi.org/10.1109/TASLP.2024.3393727
- Ranjith, R., & Chandra Sekar, A. (2024a). Conv-transformer-based Jaya Gazelle optimization for speech intelligibility with aphasia. *Signal, Image and Video Processing*, *18*(3), 2079–2094. https://doi.org/10.1007/s11760-023-02844-0
- Ranjith, R., & Chandra Sekar, A. (2024b). GTSO: Gradient tangent search optimization enabled voice transformer with speech intelligibility for aphasia. *Computer Speech*

- and Language, 84. https://doi.org/10.1016/j.csl.2023.101568
- Ren, Q., Hou, Y., Botteldooren, D., & Belpaeme, T. (2024). No More Mumbles: Enhancing Robot Intelligibility Through Speech Adaptation. *IEEE Robotics and Automation Letters*, 9(7), 6162–6169. https://doi.org/10.1109/LRA.2024.3401117
- Roßbach, J., Wagener, K. C., & Meyer, B. T. (2025). Multilingual non-intrusive binaural intelligibility prediction based on phone classification. *Computer Speech and Language*, 89. https://doi.org/10.1016/j.csl.2024.101684
- Samardzic, N., Lavandier, M., & Shen, Y. (2023). The Utilization of Psychometric Functions to Predict Speech Intelligibility in Vehicles. *SAE International Journal of Vehicle Dynamics, Stability, and NVH, 8*(1). https://doi.org/10.4271/10-08-01-0002
- Santiago Perez, T., & Crowe, B. (2021). Community Participation for Transition- Aged Youth with Intellectual and Developmental Disabilities: A Systematic Review. *Therapeutic Recreation Journal*, 55(1). https://doi.org/10.18666/trj-2021-v55-i1-10296
- Xue, W., Cucchiarini, C., van Hout, R. W. N. M., & Strik, H. (2023). Measuring the intelligibility of dysarthric speech through automatic speech recognition in a pluricentric language. Speech Communication, 148, 23–30. https://doi.org/10.1016/j.specom.2023.02.004
- ZainEldin, H. Y., Gamel, S. A., Talaat, F. M., Aljohani, M., Baghdadi, N. A., Malki, A. S., Badawy, M. M., & Elhosseini, M. A. (2024). Silent no more: a comprehensive review of artificial intelligence, deep learning, and machine learning in facilitating deaf and mute communication. *Artificial Intelligence Review*, 57(7). https://doi.org/10.1007/s10462-024-10816-0
- Zhang, X. (2025). Research on the Quality Improvement Path of Artificial Intelligence-Assisted Teaching in the Construction of Higher Vocational English Gold Classes under the Integration of Industry and Education. International Journal for Housing Science and Its Applications, 46(3), 7073–7082. https://doi.org/10.70517/ijhsa463607
- Zhang, Y., Tan, X., & Qu, X. (2024). From toy-like to intelligent:

 ARM-based cloud-injected AI companion robot.

 International Journal of Information and Communication
 Technology, 24(7), 17–50.

 https://doi.org/10.1504/IJICT.2024.139108